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Abstract

A new approach to the derivation of local extremum diminishing finite element schemes is presented. The mono-

tonicity of the Galerkin discretization is enforced by adding discrete diffusion so as to eliminate all negative off-diagonal

matrix entries. The resulting low-order operator of upwind type acts as a preconditioner within an outer defect cor-

rection loop. A generalization of TVD concepts is employed to design solution-dependent antidiffusive fluxes which are

inserted into the defect vector to preclude excessive smearing of solution profiles by numerical diffusion. Standard TVD

limiters can be applied edge-by-edge using a special reconstruction of local three-point stencils. As a fully multidi-

mensional alternative to this technique, a new limiting strategy is introduced. A node-oriented flux limiter is constructed

so as to control the ratio of upstream and downstream edge contributions which are associated with the positive and

negative off-diagonal coefficients of the high-order transport operator, respectively. The proposed algorithm can be

readily incorporated into existing flow solvers as a �black-box� postprocessing tool for the matrix assembly routine. Its

performance is illustrated by a number of numerical examples for scalar convection problems and incompressible flows

in two and three dimensions.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

An adequate treatment of unstable convective terms is a matter of utmost importance for the majority of

CFD applications. Solutions produced by standard discretization techniques are typically corrupted by

nonphysical oscillations and/or excessive numerical diffusion. Traditionally, these problems have been dealt

with by means of a nonlinear shock-capturing viscosity. Modern high-resolution schemes are based on flux/

slope limiters which switch between linear high- and low-order discretizations adaptively depending on the
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smoothness of the solution. The foundations of this methodology were laid by Boris and Book [5] who in-

troduced the pioneering concept of flux-corrected transport (FCT).A fullymultidimensional generalizationof

the FCT algorithm was proposed by Zalesak [47] and carried over to finite elements by L€ohner et al. [31,32].
Another multidimensional flux-limited scheme was developed by Thuburn [44] in the finite volume context.

In a series of recent publications [21–24] we extended the classical FEM-FCT formulation to implicit

time-stepping and developed a new approach to the design of positivity-preserving schemes on arbitrary

meshes. In this paper, we employ similar tools to investigate and promote another important class of high-

resolution schemes which was established by Harten [15,16]. His total variation diminishing (TVD)

methods and extensions thereof rest on a firm mathematical basis and have enjoyed an increasing popu-

larity over the past two decades. However, both the theory and the algorithms are essentially one-di-

mensional and no rigorous generalization to the multidimensional case is available to date. As a matter of
fact, most of the CFD codes utilizing a (quasi-) TVD discretization of convective terms resort to directional

splitting on Cartesian grids.

In light of the above, TVD limiters have hardly been used in the finite element context. In scarce

publications on that subject, TVD-like artificial viscosities were designed using an ad hoc reconstruction of

local one-dimensional stencils associated with edges of the finite element mesh [1,33,34]. Even though the

numerical results were found to be quite promising, such schemes cannot be guaranteed to be positivity-

preserving and may fail to suppress the nonphysical oscillations in some cases. Moreover, a piecewise-linear

approximation on a simplex mesh is a prerequisite for the derivation of the underlying edge-based data
structure [37]. Therefore, this approach is not suitable for multilinear and higher order finite elements.

Currently, there is a pronounced trend towards the use of discontinuous Galerkin methods [7,8] and

fluctuation splitting/residual distribution schemes [6,9] which are applicable to unstructured meshes and

share some characteristics of both finite element and finite volume techniques.

The algebraic approach pursued in this paper consists in modifying the discrete transport operators so as

to render the discretization local extremum diminishing. To this end, the oscillatory high-order operator is

transformed into a �monotone� low-order one by a conservative elimination of negative off-diagonal entries

[22]. To recover the high accuracy of the original discretization in regions where the solution is sufficiently
smooth, excessive numerical diffusion is removed by adding a limited amount of compensating antidiffu-

sion. The diffusive and antidiffusive terms are decomposed into a sum of skew-symmetric internodal fluxes

which are associated with edges of the sparsity graph for the global matrix. In general, two neighboring

nodes may engage in a bilateral mass exchange if their basis functions have overlapping supports. A

conservative flux decomposition is also feasible for the discretized convective terms [23]. A complete

transition to an edge-based data structure may reduce the overhead incurred by indirect addressing and

offer considerable savings in terms of both CPU time and memory requirements [30,33]. At the same time, it

is not mandatory, unlike in the FEM-TVD method of Lyra et al. [34].
The formation of wiggles is precluded by a flux limiter which controls the slope ratio in the direction

of each edge or the interplay of upstream and downstream edge contributions to each node. In either

case, the space discretization is proved to be local extremum diminishing. The first method (slope

limiting) represents a generalization of the standard approach based on stencil reconstruction. The

second one (flux limiting) is conceptually different and utilizes some features of the multidimensional

FCT formulation. It turns out to be more robust and exhibits much better convergence rates to the

steady state, at least in the case of certain nonconforming finite elements which lend themselves to the

numerical treatment of the incompressible Navier–Stokes equations. Moreover, no ad hoc recovery of
solution values at fictitious �dummy nodes� is necessary, so that the limiter is completely independent of

the mesh topology. All the required information is inferred from the coefficients and the sparsity

pattern of the discrete operators. In fact, the algebraic nature of the proposed algorithm makes it a

generic CFD tool which is applicable to finite element, finite volume and finite difference discretizations

alike.
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2. One-dimensional TVD schemes

Let us briefly review the classical TVD methodology in order to introduce some basic concepts and
identify the main difficulties which hinder a truly multidimensional generalization. A detailed presentation

of this material can be found in [17,28,43]. It was shown by Lax [27] that any physically admissible solution

to a scalar conservation law

ou
ot
þ of ðuÞ

ox
¼ 0; ð1Þ

where f is a flux function, is characterized by a nonincreasing total variation defined as

TVðuÞ ¼
Z 1

�1

ou
ox

����
���� dx: ð2Þ

In fact, the exact solution is constant along the characteristic lines given by dx=dt ¼ aðuÞ, where

aðuÞ ¼ df ðuÞ=du is the propagation speed. In light of the above, it is natural to require that the total

variation of the numerical solution be nonincreasing as well, i.e.

TVðunþ1Þ6TVðunÞ; where TVðunÞ ¼
X
i

juniþ1 � uni j: ð3Þ

Here and below ui stand for the values of the approximate solution at the mesh nodes xi and the super-

scripts refer to the time level at which it is evaluated. The neighboring grid points xi and xi�1 exchange the
conserved quantities via numerical fluxes fi�1=2 which are supposed to be consistent with the underlying

continuous flux f ðuÞ [28].
Harten [15] proved that a conservative semi-discrete difference scheme

dui
dt
þ fiþ1=2 � fi�1=2

Dx
¼ 0 ð4Þ

is total variation diminishing provided that it can be rewritten in the form

dui
dt
¼ ci�1=2ðui�1 � uiÞ þ ciþ1=2ðuiþ1 � uiÞ ð5Þ

with (possibly nonlinear) nonnegative coefficients ci�1=2 P 0 and ciþ1=2 P 0. Furthermore, an additional

CFL-like condition must be reckoned with unless the fully implicit backward Euler method is employed for
the time discretization [15,22].

According to the Godunov theorem [13], linear TVD schemes are doomed to be at most first-order

accurate. To circumvent this serious limitation, the numerical fluxes fi�1=2 can be constructed in a nonlinear

way by blending high- and low-order approximations

fi�1=2 ¼ f L
i�1=2 þ Ui�1=2½fH

i�1=2 � f L
i�1=2�: ð6Þ

Here Ui�1=2 is an adaptive correction factor which is referred to as the flux limiter and designed so as to

satisfy Harten�s TVD conditions (5). As a rule of thumb, it should be equal to zero in the vicinity of steep

gradients and approach (or even exceed) unity in regions where the solution is sufficiently smooth. This

corresponds to adding a proper amount of nonlinear antidiffusion to the low-order flux approximation f L
i�1=2

so as to improve the accuracy without generating spurious wiggles and violating the TVD property.

To elucidate the ins and outs of this hybrid method in a rather simple setting, let us consider the linear

convection equation
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ou
ot
þ v

ou
ox
¼ 0 ð7Þ

with a constant velocity v > 0. In the course of space discretization, the underlying flux function f ðuÞ ¼ vu
is typically approximated by

f L
iþ1=2 ¼ vui upwind difference method ð8Þ

or

fH
iþ1=2 ¼ v

uiþ1 þ ui
2

central difference method: ð9Þ

The incoming fluxes f L
i�1=2 and fH

i�1=2 are defined simply by shifting the index i. It can be easily verified that

the upwind-biased flux approximation yields a first-order accurate (linear) TVD scheme with the coeffi-

cients ci�1=2 ¼ v=Dx, ciþ1=2 ¼ 0. To recover the second-order accuracy of the central difference discretization

whenever possible, we insert the above approximations into (6) to obtain the nonlinear TVD flux

fiþ1=2 ¼ vui þ
v
2
Uiþ1=2ðuiþ1 � uiÞ: ð10Þ

To determine the magnitude of admissible antidiffusive correction, the flux limiter U should examine the

local smoothness of the solution. A suitable sensor is provided by the ratio of consecutive gradients

evaluated at the grid point located upwind. In the case of a positive velocity, we have Uiþ1=2 ¼ UðriÞ. The
involved slope ratio

ri ¼
ui � ui�1
uiþ1 � ui

ð11Þ

is obviously negative at a local extremum (see Fig. 1), relatively small for smooth data and large if the

numerical solution tends to change abruptly.
As shown by Jameson [18], it is worthwhile to interpret and implement the flux limiter U in terms of a

special limited average operator L being a function of two variables such that UðrÞ ¼Lð1; rÞ. This op-

erator is supposed to possess the following properties:
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Fig. 1. Three-point stencil in one dimension.
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P1: Lða; bÞ ¼Lðb; aÞ;
P2: Lðca; cbÞ ¼ cLða; bÞ;
P3: Lða; aÞ ¼ a;
P4: Lða; bÞ ¼ 0 if ab6 0:

In particular, the last property ensures that UðrÞ ¼ 0 if r6 0. Thus, the accuracy of a TVD discretization

inevitably degrades to the first order at local extrema. Another important implication is the symmetry of the

flux limiter

UðrÞ ¼Lð1; rÞ ¼ rLð1=r; 1Þ ¼ rUð1=rÞ ð12Þ
which follows from the properties (P1) and (P2). By virtue of this identity, the antidiffusive flux received by

the grid point i from its right neighbor is given by

UðriÞðuiþ1 � uiÞ ¼Lðuiþ1 � ui; ui � ui�1Þ ¼ Uð1=riÞðui � ui�1Þ ð13Þ
and has the same effect as a diffusive flux from the left neighbor if Uð1=riÞ > 0. Note that working with L
rather than U prevents division by zero in the denominator of ri.

Making use of the definition (11), one can represent the semi-discrete scheme for the convection equation

in the desired form (5) with the coefficients

ci�1=2 ¼
v

2Dx
2

�
þ UðriÞ

ri
� Uðri�1Þ

�
; ciþ1=2 ¼ 0: ð14Þ

To meet the requirements of Harten�s theorem, the expression in the brackets must be nonnegative. A

variety of limiters designed to enforce this condition have been proposed in the literature. Some of the most

popular two-parameter ones are as follows:

minmod : Lða; bÞ ¼ Sða; bÞ �minfjaj; jbjg;
Van Leer : Lða; bÞ ¼Sða; bÞ � 2jajjbjjaj þ jbj ;
MC : Lða; bÞ ¼Sða; bÞ �min
jaþ bj

2
; 2jaj; 2jbj

� �
;

superbee : Lða; bÞ ¼Sða; bÞ �maxfminf2jaj; jbjg;minfjaj; 2jbjgg:

Here Sða; bÞ stands for the synchronized sign function

Sða; bÞ ¼ signðaÞ þ signðbÞ
2

¼
1 if a > 0 ^ b > 0;
�1 if a < 0 ^ b < 0;
0 otherwise:

8<
:

The associated one-parameter limiters U yield correction factors lying in the range ½0; 2�. Note that the

integer values 0, 1, 2 result in the standard upwind, central, and downwind approximation, respectively.

Nowadays, TVD schemes of this kind are widely used in CFD software in conjunction with finite dif-

ference discretizations on structured grids and a number of promising high-resolution finite volume
schemes is available for unstructured ones (see e.g. [4]). At the same time, a finite element practitioner
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considering the implementation of a TVD-like method in a general purpose code is faced by (at least) the

following challenges:

• how to cast a finite element scheme in conservation form?
• how to generalize Harten�s TVD criteria to multidimensions?

• how to perform upwinding in the finite element context?

• how to deal with a variable mesh size and/or velocity field?

• how to discretize nonlinear source and/or sink terms?

• how to define the parameter ri on unstructured grids?

• how to treat nonlinear problems in an implicit fashion?

These problems proved to be a rather hard nut to crack, so that the development of FEM-TVD methods

has eventually ended up in a deadlock. In what follows, we will give answers to the questions listed above
and propose a new methodology for the design of TVD-type discretizations on unstructured meshes. Some

peculiarities of a finite element implementation are discussed in the next two sections, although they are not

essential for the algebraic flux correction paradigm to be presented afterwards.
3. Finite element discretization

As a model problem, we consider the multidimensional counterpart of Eq. (7) which represents a mass
conservation law for a scalar quantity u

ou
ot
þr � ðvuÞ ¼ 0 in X; ð15Þ

where the velocity field v ¼ vðx; tÞ is assumed to be known analytically or computed numerically from a

momentum equation solved in a parallel way. The initial data are given by uðx; 0Þ ¼ u0ðxÞ, and boundary
conditions are to be prescribed only at the inlet Cin ¼ fx 2 C : v � n < 0g, where n denotes the unit outward

normal to the boundary C.
The weak form of the continuity equation is derived by integrating the weighted residual over the do-

main X and setting the result equal to zero

Z
X
w

ou
ot

�
þr � ðvuÞ

�
dx ¼ 0 8w: ð16Þ

If the boundary conditions are specified in terms of fluxes rather than actual values of u at the inlet, it is

worthwhile to integrate the convective term by parts and substitute the incoming fluxes into the resulting

surface integral.

A common practice in finite element methods for conservation laws is to interpolate the convective fluxes

in the same way as the numerical solution

uh ¼
X
j

ujuj; ðvuÞh ¼
X
j

ðvjujÞ uj; ð17Þ

where uj denote the basis functions spanning the finite-dimensional subspace. This kind of approximation

was called the group finite element formulation by Fletcher [12] who found it to provide a very efficient

treatment of nonlinear convective terms and even lead to a small gain of accuracy for the 2D Burgers
equation discretized on a uniform grid.

The substitution of (17) into (16) yields the following semi-discrete problem:
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X
j

Z
X
uiuj dx

� �
duj
dt
þ
X
j

Z
X
uivj � ruj dx

� �
uj ¼ 0: ð18Þ

This gives a system of ordinary differential equations for the nodal values of the approximate solution

which can be written compactly in matrix form

MC

du
dt
¼ Ku; ð19Þ

where MC ¼ fmijg denotes the consistent mass matrix and K ¼ fkijg stands for the discrete transport op-

erator. The matrix entries are given by

mij ¼
Z
X
uiuj dx; kij ¼ �vj � cij; cij ¼

Z
X
uiruj dx: ð20Þ

For fixed meshes, the coefficients mij and cij remain unchanged throughout the simulation and, conse-

quently, need to be evaluated just once during the initialization step. This enables us to update the matrix K
in a very efficient way by computing its entries kij from formula (20) without resorting to costly numerical

integration. The auxiliary coefficients cij correspond to the discretized space derivatives and have zero row

sums, i.e.
P

j cij ¼ 0 as long as the sum of the basis functions uj is equal to one at every point.
4. Conservative flux decomposition

It is common knowledge that the Galerkin FEM is globally conservative [14]. Indeed, summing Eq. (18)

over i and taking into account that the basis functions sum to unity, one recovers the integral form of the

conservation law. Therefore, the total mass of u in X may only change due to the boundary fluxes. At the

same time, the finite element discretization of convective terms does not admit a natural decomposition into

a sum of numerical fluxes from one node into another. Since most high-resolution schemes operate with

such fluxes, their extension to finite elements proved to be a difficult task. Peraire et al. [37] demonstrated

that a conservative flux decomposition is feasible for P1 finite elements (piecewise-linear approximation on a
simplex mesh). A similar technique was proposed by Barth [3,4] who investigated the relationship between

finite element and finite volume discretizations. The transition to an edge-based data structure reportedly

offers a number of significant advantages as compared to the conventional element-based formulation.

Moreover, it paves the way for a straightforward extension of many popular high-resolution schemes

(including TVD) to unstructured meshes [30,33,35].

In [23] we developed a flux decomposition technique which is applicable to general finite element ap-

proximations on arbitrary meshes including quadrilateral and hexahedral ones. Integration by parts in the

weak formulation (16) and the fact that the coefficients cij have zero row sums make it possible to de-
compose the contribution of convective terms to interior nodes into a sum of skew-symmetric internodal

fluxes [23]

ðKuÞi ¼
X
j 6¼i

gij; where gij ¼ ðvj � cjiÞuj � ðvi � cijÞui: ð21Þ

A promising approach to the derivation of nonoscillatory finite element methods consists in replacing

the centered flux gij by another consistent numerical flux [33]. In spite of the advantages offered by such an

edge-oriented solution strategy, it is often desirable to use an already existing finite element code based on

conventional data structures. Due to the fact that the Galerkin method is conservative, it suffices to

guarantee that all subsequent matrix manipulations to be performed at the discrete level do not violate this
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property. To this end, we introduce the concept of discrete diffusion operators which are defined as sym-

metric matrices having zero row and column sums [22]

D ¼ fdijg such that
X
i

dij ¼
X
j

dij ¼ 0; dij ¼ dji: ð22Þ

Some typical examples are the discrete Laplacian, the streamline-diffusion operator and the artificial dif-

fusion introduced by mass lumping.
A discrete diffusion operator D applied to the vector u yields

ðDuÞi ¼
X
j

dijuj ¼
X
j 6¼i

dijðuj � uiÞ ð23Þ

due to the zero row sum property. Hence, the contribution of diffusive terms to node i can be decomposed

into a sum of numerical fluxes

ðDuÞi ¼
X
j 6¼i

fij; where fij ¼ dijðuj � uiÞ: ð24Þ

The so-defined flux fij from node j into node i is proportional to the difference between the nodal values, so

it leads to a steepening or flattening of solution profiles depending on the sign of the diffusion coefficient dij.
Furthermore, the symmetry of the matrix D implies that fji ¼ �fij so that there is no net loss or gain of

mass.

The skew-symmetric diffusive fluxes can be associated with edges of the graph which represents the
sparsity pattern of the global stiffness matrix. For linear finite elements, their number equals the

number of actual mesh edges, whereas multilinear and high-order FEM approximations allow for in-

teractions of all nodes sharing the same element. As we are about to see, artificial diffusion operators

satisfying the above conditions constitute a very useful tool for the design of multidimensional high-

resolution schemes.
5. Design criteria

In order to prevent the formation of spurious undershoots and overshoots in the vicinity of steep gra-

dients, we need a suitable generalization of Harten�s theorem to multidimensions. Assume that the semi-

discretized transport equation can be cast in the generic form

dui
dt
¼

X
j

rijuj; where rii ¼ �
X
j 6¼i

rij: ð25Þ

In particular, this is feasible for our nodal ODE system (19) ifMC is replaced by its diagonal counterpartML

resulting from the row-sum mass lumping

rij ¼
kij
mi

; where mi ¼
X
j

mij; ML ¼ diagfmig

and the velocity field v is discretely divergence-free in the sense that the lumped-mass L2-projection for the

recovery of continuous nodal gradients yields the approximation ðr � vÞi ¼ ð1=miÞ
P

j vj � cij ¼ �
P

j rij ¼ 0:
As long as the coefficients of the numerical scheme have zero row sums, the right-hand side of (25) can be

represented in terms of the off-diagonal ones

dui
dt
¼

X
j 6¼i

rijðuj � uiÞ: ð26Þ
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It was shown by Jameson [18–20] that negative coefficients in the above expression are the �villains� re-
sponsible for the nonphysical oscillations produced by standard high-order methods. Indeed, if

rij P 0 8j 6¼ i then the spatial discretization proves stable in the L1-norm due to the fact that
• maxima do not increase: ui ¼ maxj uj ) uj � ui 6 0 ) dui=dt6 0,

• minima do not decrease: ui ¼ minj uj ) uj � ui P 0 ) dui=dtP 0.

As a rule, the coefficient matrices are sparse, so that rij ¼ 0 unless i and j are adjacent nodes. Arguing as

above, one can show that a local maximum cannot increase, and a local minimum cannot decrease.

Therefore, semi-discrete schemes of this type are local extremum diminishing (LED). For three-point finite

difference methods, the LED constraint reduces to Harten�s TVD conditions. If the homogeneous Dirichlet

boundary conditions are prescribed at both endpoints, the total variation can be expressed as [18]

TVðuhÞ ¼ 2
X

umax

�
�
X

umin

�
ð27Þ

and is obviously nonincreasing as long as the local maxima and minima do not grow. Therefore, one-di-
mensional LED schemes are necessarily total variation diminishing. At the same time, the positivity of

matrix coefficients is easy to verify for arbitrary discretizations on unstructured meshes so that Jameson�s
LED criterion provides a very handy generalization of the TVD concepts.

After the time discretization, an additional condition may need to be imposed in order to make sure that

the solution values remain nonnegative if this should be the case for physical reasons. In general, a fully

discrete scheme is positivity-preserving if it can be represented in the form

Aunþ1 ¼ Bun; ð28Þ

where B ¼ fbijg has no negative entries and A ¼ faijg is a so-called M-matrix defined as a nonsingular

discrete operator such that aij 6 0 for j 6¼ i and all the coefficients of its inverse are nonnegative. These

properties imply that the positivity of the old solution un carries over to unþ1 ¼ A�1Bun. Here and below the

superscript n denotes the time level.

As a useful byproduct, our algebraic positivity criterion yields a readily computable upper bound for
admissible values of the time step Dt ¼ tnþ1 � tn. In particular, the local extremum diminishing ODE system

(26) discretized in time by the h-scheme reads

unþ1i � uni
Dt

¼ h
X
j 6¼i

rnþ1
ij ðunþ1j � unþ1i Þ þ ð1� hÞ

X
j 6¼i

rn
ijðunj � uni Þ: ð29Þ

It is unconditionally positivity-preserving for h ¼ 1 (backward Euler method) and subject to the following

CFL-like condition otherwise [22,23]

1þ Dtð1� hÞmin
i

rn
ii P 0 for 06 h < 1: ð30Þ

Note that this estimate is based solely on the magnitude of the diagonal coefficients rn
ii, which makes it a

handy tool for adaptive time step control.
6. Required modifications

The basic idea for the construction of a high-resolution scheme at the algebraic level is rather simple. It

can be traced back to the concepts of flux-corrected transport [5,47]. Roughly speaking, the governing

equation is discretized in space by an arbitrary linear high-order method (e.g. central differences or
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Galerkin FEM) and the resulting matrices are modified a posteriori so as to satisfy the imposed constraints.

The flow chart of required algebraic manipulations is sketched in Fig. 2.

First, we perform mass lumping and transform the high-order operator K into its nonoscillatory low-

order counterpart L by adding a discrete diffusion operator D designed so as to get rid of all negative off-

diagonal coefficients. In the next step, excessive artificial diffusion is removed. This is accomplished by

applying a limited amount of compensating antidiffusion F which depends on the local solution behavior
and improves the accuracy in smooth regions. Both diffusive and antidiffusive terms admit a conservative

flux decomposition so that the proposed algebraic modifications do not affect the total mass. It is worth

mentioning that the final operator K� does have some negative off-diagonal coefficients. Nevertheless, the

resulting discretization proves local extremum diminishing if (for a given solution u) there exists a matrix L�

such that all off-diagonal entries l�ij are nonnegative and L�u ¼ K�u. In the remainder of this paper we will

dwell on the design of discrete diffusion/antidiffusion operators and introduce multidimensional flux lim-

iters of TVD type which guarantee the existence of L� without constructing it explicitly.
7. Discrete upwinding

For finite difference and finite volume discretizations, the first-order accurate upwind method yields an

operator L which corresponds to the least diffusive linear LED scheme. Unfortunately, it has been largely

unclear how to construct such an optimal low-order discretization in the finite element framework.

Streamline-diffusion methods like SUPG are stable but not monotonicity-preserving, whereas other up-

wind-biased finite element schemes resort to a finite volume approximation of convective terms [1,2,46]. At
the same time, the LED constraint can be enforced by elimination of negative off-diagonal coefficients from

the discrete transport operator. Interestingly enough, this algebraic approach to the design of �monotone�
low-order methods reduces to standard upwinding for the one-dimensional convection equation [21,22].

As a starting point, we consider a linear high-order discretization, e.g. our semi-discrete problem (19) for

the Galerkin method. After mass lumping, each nodal value ui satisfies an ordinary differential equation of

the form
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mi
dui
dt
¼

X
j 6¼i

kijðuj � uiÞ þ diui; where di ¼
X
j

kij: ð31Þ

The first term in the right-hand side is associated with the �incompressible� part of the discrete transport
operator K since diui is an approximation of �ur � v (see above) which vanishes for divergence-free velocity

fields and is responsible for a physical growth of local extrema otherwise. For the concomitant low-order

scheme to be local extremum diminishing, all off-diagonal coefficients of the linear operator L ¼ K þ D
must be nonnegative. Hence, the optimal diffusion coefficients are given by [22,23]

dij ¼ dji ¼ maxf0;�kij;�kjig; dii ¼ �
X
j 6¼i

dij: ð32Þ

By construction, D ¼ fdijg is a discrete diffusion operator. It follows that the difference between the re-

sulting scheme and the original one can be represented as a sum of skew-symmetric diffusive fluxes

f d
ij ¼ dijðuj � uiÞ between adjacent nodes whose basis functions have overlapping supports. Recall that this

is sufficient to guarantee mass conservation at the algebraic level. The above manipulations lead to the
desired semi-discrete scheme of low order (see the roadmap in Fig. 2) which reads

ML

du
dt
¼ Lu such that lij P 0 8j 6¼ i: ð33Þ

In practice, the elimination of negative off-diagonal entries is performed edge-by-edge without assem-

bling the global matrix D. After the initialization L :¼ K, we examine each pair of nonzero off-diagonal

coefficients lij and lji. If the smaller one is negative, it is set equal to zero and three other entries are
modified so as to restore row/column sums:

lii :¼ lii � dij; lij :¼ lij þ dij;

lji :¼ lji þ dij; ljj :¼ ljj � dij:
ð34Þ

Let us orient the edges of the sparsity graph so that lji P lij ¼ maxf0; kijg for the edge ij
!
. This orientation

convention implies that node i is located �upwind� and corresponds to the row number of the eliminated

negative entry (if any). Furthermore, the nodes can be renumbered so as to transform L into an upper or

lower triangular matrix and to design very efficient solvers/smoothers/preconditioners for the resulting
linear system.

The �postprocessing� technique described in this section will be referred to as discrete upwinding. Note

that the LED constraint is imposed only on the incompressible part of the transport operator. The �reactive�
term diui is not affected by artificial diffusion since

P
j lij ¼

P
jðkij þ dijÞ ¼

P
j kij due to the zero row sum

property of D. If the governing equation contains sources and sinks, they may need to be linearized as

proposed by Patankar [36] and explained in [23,24]. Furthermore, physical diffusion can be built into the

matrix either before or after discrete upwinding. In the former case, it is automatically detected and the

amount of artificial diffusion is reduced accordingly. In our experience, TVD limiters should be applied to
the convective operator alone. Therefore, it is advisable to incorporate the contribution of physical dif-

fusion into L rather than K.
8. Generalized TVD formulation

The modified Galerkin discretization derived by means of row-sum mass lumping and discrete up-

winding is optimal in the sense that it incorporates just as much artificial diffusion as is necessary to
preclude the birth and growth of spurious wiggles regardless of the local smoothness. Nevertheless, this
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LED scheme is linear and therefore at most first-order accurate [13]. To circumvent the restrictive Godunov

theorem, a nonoscillatory high-resolution scheme must be nonlinear even for a linear partial differential

equation. On the other hand, the vast majority of real-life CFD applications are governed by nonlinear
conservation laws to begin with, so that the computational overhead due to an iterative adjustment of

implicit artificial diffusion is not very significant.

In order to offset the loss of accuracy in smooth regions, we modify the discrete transport operator again

by adding a limited amount of nonlinear antidiffusion

K�ðuÞ ¼ Lþ F ðuÞ ¼ K þ Dþ F ðuÞ; ð35Þ

where both D and F ðuÞ possess the properties of discrete diffusion operators.

In a practical implementation, the contribution of nonlinear antidiffusive terms to the right-hand side of

the final semi-discrete scheme (cf. the flow chart in Fig. 2)

ML

du
dt
¼ K�u  ðFuÞi ¼

X
j 6¼i

f a
ij ð36Þ

is assembled edge-by-edge from the skew-symmetric internodal fluxes

f a
ij :¼ minfUðriÞdij; ljigðui � ujÞ; f a

ji :¼ �f a
ij : ð37Þ

The antidiffusive flux f a
ij from node j into its upwind (in the sense of our orientation convention lji P lij)

neighbor i depends on the diffusion coefficient dij for discrete upwinding and on the entry

lji ¼ maxfkji; kji � kijg of the low-order transport operator. Furthermore, U is a standard one-parameter

limiter applied to a suitable smoothness indicator ri (to be specified below). By definition, the downwind

node j receives the flux f a
ji of the same magnitude but with the opposite sign so that mass conservation is

guaranteed.

Let us derive a sufficient condition for scheme (36) to be local extremum diminishing. If UðriÞ ¼ 0 or
dij ¼ 0, the antidiffusive flux f a

ij vanishes and does not pose any hazard. Therefore, we restrict ourselves to

the nontrivial case f a
ij 6¼ 0 which implies that both UðriÞ and dij are strictly positive. Our objective is to prove

the existence of a LED operator L� which is equivalent to K� for the given solution u (see the last box in

Fig. 2). Clearly, the sensor ri cannot be chosen arbitrarily. The symmetry property (12) of the limiter U
makes it possible to represent the antidiffusive flux in the form

f a
ij ¼ UðriÞaijðui � ujÞ ¼ Uð1=riÞaijDuij; ð38Þ

where the antidiffusion coefficient aij and the upwind difference Duij are defined as follows:

aij :¼ minfdij; lji=UðriÞg; Duij :¼ riðui � ujÞ: ð39Þ

For the numerical solution to be nonoscillatory, the antidiffusive fluxes must behave as diffusive ones, cf.

Eq. (13). The assumption dij > 0 implies that kij < 0 and lij ¼ 0 for the edge ij
!

which links an upwind node

i and a downwind node j. Therefore, its contributions to the modified convective term K�u in (36) can be

written as

k�ijðuj � uiÞ ¼ f a
ij ; k�jiðui � ujÞ ¼ ljiðui � ujÞ � f a

ij : ð40Þ

The increment to node j is obviously of diffusive nature and satisfies the LED criterion, since the coefficient

k�ji ¼ lji � UðriÞaij is nonnegative by construction (see the definition of aij). Furthermore, it follows from

relation (38) that the negative off-diagonal entry k�ij ¼ �UðriÞaij of the nonlinear transport operator K� is
acceptable provided Duij admits the following representation:
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Duij ¼
X
k 6¼i

rikðuk � uiÞ; where rik P 0 8k 6¼ i: ð41Þ

In other words, the limited antidiffusive flux f a
ij from node j into node i should be interpreted as a sum of

diffusive fluxes contributed by other neighbors. It remains to devise a multidimensional smoothness indi-
cator ri and check if the corresponding upwind difference Duij satisfies the above condition.
9. Slope-limiter FEM-TVD algorithm

For classical finite difference TVD schemes, the quantity ri is given by the slope ratio (11) at the upwind

node so that Duij ¼ uk � ui, where k ¼ i� 1 is the second neighbor of node i. However, this natural defi-

nition of ri is no longer possible in multidimensions, whereby each node interacts with more than two
neighbors. A geometric approach commonly employed in the literature is to reconstruct a local one-

dimensional stencil by insertion of equidistant dummy nodes on the continuation of each mesh edge

[1,18,33,34]. The difference Duij is defined as before using the interpolated or extrapolated solution value at

the dummy node k adjacent to the upwind node i. The construction of a three-point stencil for an un-

structured triangular mesh is illustrated in Fig. 3.

The numerical behavior of various techniques for the recovery of uk was analyzed in detail by Lyra [33].

His comparative study covers the following algorithms:

1. Interpolation/extrapolation using the adjacent triangle Ti containing node i.
2. Interpolation using the actual triangle Tk containing the dummy node k.
3. Extrapolation using a least squares reconstruction for the gradient at node i.
Numerical experiments revealed that the solutions depend strongly on the employed strategy. The first

option was proved to provide the LED property but failed to produce nonoscillatory results for some

aerodynamic applications. The second procedure based on the actual triangle was favored due to the en-

hanced robustness as compared to the use of the adjacent triangle. However, the resulting discretization is

no longer local extremum diminishing and neither is the gradient reconstruction method which corresponds

to

Duij ¼ ðxi � xjÞ � rhui; where rhui ¼
1

mi

X
k 6¼i

cikðuk � uiÞ: ð42Þ
υ

k

j

i

kT iT

Fig. 3. Three-point stencil in two dimensions.
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Here rhui stands for a continuous approximation to the solution gradient at the upwind node i recovered
by means of a consistent L2-projection. The involved coefficients cik are defined in (20) for the standard

Galerkin method. This approach is relatively simple to implement and more efficient than the linear in-
terpolation techniques. However, Lyra [33] reported its performance to be quite poor and emphasized the

need for the development of a more robust algorithm for the reconstruction of nodal gradients.

Let us explain why the above choice of the upwind difference may prove unsatisfactory. If any of the

scalar products cik � ðxi � xjÞ is negative, then the formula for Duij is not of the form (41), so the numerical

scheme may fail to satisfy the LED criterion. To rectify this, one can employ a monotone projection op-

erator constructed by resorting to discrete upwinding. Note that cki ¼ �cik for internal nodes, so that the

elimination of negative off-diagonal coefficients leads to the following LED-type reconstruction procedure

[25]:

Duij ¼
2

mi

X
k 6¼i

maxf0; cik � ðxi � xjÞgðuk � uiÞ: ð43Þ

For uniform meshes in one dimension, this kind of extrapolation corresponds to using the upwind gradient

and yields Duij ¼ uk � ui, where k is the upwind neighbor of i.
By virtue of (39), the upwind difference Duij can be converted into the smoothness sensor ri which

provides an estimate of the gradient jump along the edge ij
!
. Hence, this geometric approach to the design

of nonlinear LED schemes will be referred to as the slope-limiter FEM-TVD algorithm. It may be equipped

with any standard limiter U. At the same time, the numerical results are rather sensitive to the alignment of

the three-point stencil and to the algorithm employed to recover the solution values at the dummy nodes.

Moreover, such methods are computationally expensive and may experience severe convergence problems

for steady-state applications. This shortcoming was also noticed by Lyra [33] who explained it by the lack

of background dissipation and indicated that the convergence rates can be improved to some extent by

�freezing� the antidiffusive terms as the solution approaches the steady state. The main reason for the in-

sufficient robustness seems to be the unidirectional nature of stencil reconstruction and the independent
limiting of antidiffusive fluxes associated with the same upwind node.
10. Flux-limiter FEM-TVD algorithm

Let us abandon the stencil reconstruction technique and design the smoothness indicator ri in a different

way. The one-dimensional convection equation (7) discretized in space by the lumped-mass Galerkin FEM

or by the central difference method can be written in the form (5) where the two coefficients are given by

ci�1=2 ¼
v

2Dx
> 0; ciþ1=2 ¼ �

v
2Dx

< 0: ð44Þ

Remarkably, the ratio of the upwind and downwind contributions to node i

ri ¼
ci�1=2ðui�1 � uiÞ
ciþ1=2ðuiþ1 � uiÞ

ð45Þ

reduces to the slope ratio ri defined in (11) as long as the velocity v is constant. Moreover, this interpretation

leads to a conceptually different limiting strategy which guarantees the TVD property for variable velocity

fields and carries over to multidimensions. As we are about to see, the new algorithm is akin to that

proposed by Zalesak [47] in the framework of flux-corrected transport methods, so we adopt his notation to

reflect this relationship.



D. Kuzmin, S. Turek / Journal of Computational Physics 198 (2004) 131–158 145
In the multidimensional case, the incompressible part of the original convective term Ku can be de-

composed into a sum of edge contributions with negative coefficients and a sum of those with positive

coefficients

Pi ¼
X
j6¼i

minf0; kijgðuj � uiÞ; Qi ¼
X
j 6¼i

maxf0; kijgðuj � uiÞ ð46Þ

which are due to mass transfer from the downstream and upstream directions, respectively. The sum Pi is
composed from the raw antidiffusive fluxes which offset the error incurred by elimination of negative matrix

entries in the course of discrete upwinding. They are responsible for the formation of spurious wiggles and

must be securely limited. At the same time, the constituents of the sum Qi are harmless since they resemble

diffusive fluxes and do satisfy the LED criterion. Thus, it is natural to require that the net antidiffusive flux

into node i be a limited average of the original increments Pi and Qi.

Due to the property (P4) of TVD limiters, it is worthwhile to distinguish between the positive and
negative edge contributions to both sums

Pi ¼ Pþi þ P�i ; P�i ¼
X
j 6¼i

minf0; kijg
min
max
f0; uj � uig; ð47Þ
Qi ¼ Qþi þ Q�i ; Q�i ¼
X
j 6¼i

maxf0; kijg
max

min
f0; uj � uig ð48Þ

and limit the positive and negative antidiffusive fluxes separately. To this end, we pick a standard limiter U
and compute the nodal correction factors

R�i ¼ UðQ�i =P�i Þ ð49Þ

which determine the percentage of P�i that can be retained without violating the LED constraint for row i of
the modified transport operator K�. Clearly, R�i does not need to be evaluated if the raw antidiffusion P�i
vanishes.

For each edge ij
!

of the sparsity graph, the antidiffusive flux f a
ij from its downwind node j into the

upwind node i is constructed as follows:

f a
ij :¼

minfRþi dij; ljigðui � ujÞ if ui P uj;
minfR�i dij; ljigðui � ujÞ if ui < uj;

�
f a
ji :¼ �f a

ij : ð50Þ

Importantly, the same correction factor R�i is applied to all positive/negative antidiffusive fluxes which

represent the interactions of node i with its neighbors located downstream in the sense of our orientation

convention.

The node-oriented limiting strategy makes it possible to control the combined effect of antidiffusive
fluxes acting in concert rather than merely the variation of the solution along each edge. Moreover, the new

limiter extracts all information from the original matrix K and does not need the coordinates of nodes or

other geometric details. The equivalence of (37) and (50) reveals that the underlying smoothness sensor ri is
implicitly defined by

ri ¼
Qþi =P

þ
i if ui P uj;

Q�i =P
�
i if ui < uj:

�
ð51Þ

It is easy to verify that the upwind difference Duij ¼ riðui � ujÞ satisfies condition (41) since all coefficients

in the sum of upwind contributions Q�i are nonnegative and
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Duij ¼ rijQ�i ; where rij ¼
min

max
f0; ui � ujg=P�i P 0: ð52Þ

Thus, our nonlinear semi-discrete scheme (36) proves local extremum diminishing if the antidiffusive fluxes

are computed from (50). The new algorithm will be called the flux-limiter FEM-TVD method to distinguish

it from the one described in the preceding section. In one dimension, both generalizations reduce to their

finite difference prototype.
11. Iterative defect correction

The algorithm presented so far can be classified as a method of lines which starts with an approximation

of spatial derivatives and yields a system of coupled ordinary differential equations for the time-dependent

nodal values ui. In principle, the discretization of system (36) in time can be performed using any numerical

method for initial value problems. First- or second-order accuracy is sufficient for our purposes, so we can

use the standard h-scheme. Furthermore, we concentrate on implicit time-stepping methods (0 < h6 1)

because the implementation of the fully explicit one is straightforward. As a result, we end up with a

nonlinear algebraic system of the form

ML

unþ1 � un

Dt
¼ hK�ðunþ1Þunþ1 þ ð1� hÞK�ðunÞun ð53Þ

which must be solved iteratively. According to the positivity constraint (30), the time step Dt is subject to a

CFL-like condition unless h ¼ 1.

Successive approximations to the end-of-step solution unþ1 can be computed e.g. by the fixed-point defect

correction scheme [46]

uðmþ1Þ ¼ uðmÞ þ A�1rðmÞ; m ¼ 0; 1; 2; . . . ð54Þ

where rðmÞ denotes the residual vector for the mth cycle and A is a �preconditioner� which should be easy to

invert. The iteration process continues until the norm of the defect or that of the relative changes becomes

small enough.

In a practical implementation, the �inversion� of A is also performed by a suitable iterative method for
solving the linear subproblem

ADuðmÞ ¼ rðmÞ; m ¼ 0; 1; 2; . . . ð55Þ

After a certain number of inner iterations, the resulting solution increment DuðmÞ is applied to the last it-

erate, whereby un provides a reasonable initial guess

uðmþ1Þ ¼ uðmÞ þ DuðmÞ; uð0Þ ¼ un: ð56Þ

Incidentally, the auxiliary problem (55) does not have to be solved very accurately at each outer iteration. A

moderate improvement of the residual (1–2 digits) is sufficient to obtain a good overall accuracy. By
construction, the low-order evolution operator

A ¼ ML � hDtL; L ¼ K þ D ð57Þ

for the underlying linear LED scheme (33) enjoys the M-matrix property and constitutes an excellent

preconditioner. Furthermore, the diagonal dominance of A can be enhanced by means of an implicit

underrelaxation [11]. In fact, iterative defect correction preconditioned by the monotone upwind operator is
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frequently used to enhance the robustness of CFD solvers. This practice is to be recommended even in the

linear case, since an iterative method may fail to converge if applied directly to the ill-conditioned matrix

originating from a high-order discretization of the troublesome convective terms.
The defect vector and the constant right-hand side are given by

rðmÞ ¼ bn � ½A� hDtF ðuðmÞÞ�uðmÞ; ð58Þ
bn ¼ MLun þ ð1� hÞDt½Lþ F ðunÞ�un: ð59Þ

Note that both expressions consist of a low-order contribution augmented by limited antidiffusion of the

form (36). The antidiffusive fluxes f a
ij are evaluated edge-by-edge at the corresponding time level and in-

serted into the global vectors. If they are omitted, we recover the nonoscillatory linear scheme (33) which is

overly diffusive. The task of the flux limiter is to determine how much artificial diffusion can be safely

removed without violating the LED criterion. We remark that our algebraic FEM-TVD algorithm is di-

rectly applicable to steady-state problems as well as to time-dependent equations written as stationary

boundary value problems in the space–time domain.
12. Summary of the algorithm

The proposed multidimensional generalization of TVD schemes can be implemented on arbitrary

grids using either the conventional or the edge-based data structure. As a matter of fact, the algorithm

is applicable to finite differences, finite elements and finite volumes alike, since the origin of the discrete

transport operator K is immaterial. The required modifications are limited to the matrix assembly

routine which is to be called repeatedly in the outer defect correction loop (54) for the iterative
treatment of nonlinearities. The sequence of �postprocessing� steps to be performed can be summarized

as follows:

In a loop over edges:

1. Retrieve the entries kij and kji of the high-order transport operator.

2. Determine the artificial diffusion coefficient dij from Eq. (32).

3. Update the four entries of the preconditioner A as required by (34).

4. Adopt the edge orientation ij
!

such that node i is located upwind.

5. Store the order of nodes as well as dij and lji for future reference.
In a loop over nodes:

6. Calculate the ratio of upstream/downstream contributions Q�i and P�i .
7. Apply a TVD limiter U to obtain the nodal correction factors R�i .
In a loop over edges:

8. Compute the diffusive flux f d
ij ¼ dijðuj � uiÞ due to discrete upwinding.

9. Check the sign of ui � uj and evaluate the antidiffusive flux f a
ij from (50).

10. Insert the corrected internodal flux fij ¼ f d
ij þ f a

ij into the defect vector.

The numerical examples that follow illustrate the performance of this algorithm. The slope-limiter
version can be coded in a similar way using the upwind difference (43) to determine the slope ratio

ri ¼ Duij=ðui � ujÞ and the corresponding correction factors UðriÞ. Note that no loop over nodes is needed in

this case. Indeed, the recovery of Duij via stencil reconstruction is performed independently for each edge.

As an alarming consequence, the contributions of other edges are not taken into account, so that the total

antidiffusive flux cannot be properly controlled. However, on regular grids the numerical results produced

by a slope-limiter FEM-TVD method are typically quite good [25].
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13. Numerical examples

13.1. Solid body rotation

Rotation of solid bodies with discontinuities and small scale features is frequently used as a challenging

test problem for transport algorithms. In the first example, we consider the benchmark configuration

proposed by LeVeque [29]. It is intended to examine the ability of a numerical method to reproduce both

discontinuous and smooth profiles. To this end, a slotted cylinder, a cone and a smooth hump are exposed

to the nonuniform velocity field v ¼ ð0:5� y; x� 0:5Þ and undergo a counterclockwise rotation about the

center of the square domain X ¼ ð0; 1Þ � ð0; 1Þ. Each of these bodies lies within a circle of radius r0 ¼ 0:15
centered at a point with Cartesian coordinates ðx0; y0Þ.

The exact solution to the linear convection equation after each full revolution matches the initial data

depicted in Fig. 4 (left). Let us introduce the normalized distance function rðx; yÞ ¼ ð1=r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ2

q
. It follows that uðx; y; 0Þ ¼ 0 for rðx; yÞ > 1. Elsewhere, the reference shape of the

three bodies is given by

Cylinder : ðx0; y0Þ ¼ ð0:5; 0:75Þ; uðx; y; 0Þ ¼ 1 if jx� x0jP 0:025 _ yP 0:85;
0 otherwise:

�

Cone : ðx0; y0Þ ¼ ð0:5; 0:25Þ; uðx; y; 0Þ ¼ 1� rðx; yÞ:
Hump : ðx0; y0Þ ¼ ð0:25; 0:5Þ; uðx; y; 0Þ ¼ 0:25½1þ cosðpminfrðx; yÞ; 1gÞ�:

The numerical solution at t ¼ 2p produced by the FEM-TVD scheme with the Crank–Nicolson time-

stepping and the superbee flux limiter is shown in Fig. 4 (right). It was computed on a uniform mesh of

128� 128 bilinear elements using the time step Dt ¼ 10�3.

No spurious wiggles are observed and the resolution of discontinuities is far superior to that achievable

with discrete upwind or a similar low-order method. Even the narrow bridge of the slotted cylinder is

largely preserved. However, the irrecoverable error induced by mass lumping leads to some loss of accuracy
Fig. 4. Solid body rotation, 128� 128 bilinear elements, t ¼ 2p.
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which manifests itself in a noticeable erosion of the ridges. Furthermore, the employed superbee limiter is

known to be slightly underdiffusive (see the next example), which results in an artificial steepening of so-

lution gradients and a pronounced peak flattening for the cone and hump.

13.2. Rotation of a Gaussian hill

The second test case proposed by Lapin [26] makes it possible to evaluate the magnitude of artificial

diffusion due to the discretization in space and time. This can be accomplished by applying certain sta-

tistical tools to the convection–diffusion equation

ou
ot
þ v � ru ¼ �Du in X ¼ ð�1; 1Þ � ð�1; 1Þ; ð60Þ

where v ¼ ð�y; xÞ is the velocity field and � ¼ 10�3 is the physical diffusion coefficient.

The initial condition to be imposed is given by uðx; y; 0Þ ¼ dðx0; y0Þ, where d stands for the Dirac delta

function. Clearly, it is impossible to initialize the solution by a singular function in a practical imple-

mentation. Instead, it is reasonable to concentrate the whole mass at a single node. The integral of a discrete

function over the domain X can be computed as the sum of nodal values multiplied by the entries of the
lumped mass matrix:

R
X uh dx ¼

R
X

P
i uiui dx ¼

P
i miui. The total mass of a delta function equals unity.

Hence, one should find node i closest to the peak location ðx0; y0Þ and set u0i ¼ 1=mi, u0j ¼ 0; j 6¼ i. Al-

ternatively, one can start with the exact solution at a time t0 > 0.

In the rotating Lagrangian reference frame, the convective term vanishes and the resulting diffusion

problem can be solved analytically. It can be readily verified that the exact solution of (60) is a Gaussian hill

defined by the normal distribution function

uðx; y; tÞ ¼ 1

4p�t
e�r

2=4�t; r2 ¼ ðx� x̂Þ2 þ ðy � ŷÞ2;

where x̂ and ŷ denote the time-dependent peak coordinates

x̂ðtÞ ¼ x0 cos t � y0 sin t; ŷðtÞ ¼ �x0 sin t þ y0 cos t:

The actual peak coordinates for a numerical approximation may be quite different. They can be cal-

culated as the mathematical expectation of the center of mass under the probability distribution with

density uh given by the finite element solution

x̂hðtÞ ¼
Z
X
xuhðx; y; tÞ dx; ŷhðtÞ ¼

Z
X
yuhðx; y; tÞ dx:

The quality of approximation can be assessed by considering the standard deviation

r2
hðtÞ ¼

Z
X
r2huhðx; y; tÞ dx; r2h ¼ ðx� x̂hÞ2 þ ðy � ŷhÞ2;

which quantifies the rate of smearing caused by both physical and numerical diffusion. Due to all sorts of

discretization errors, r2
h may differ considerably from the exact value r2 ¼ 4�t. This discrepancy represented

by the relative variance error

Drrel ¼
r2
h � r2

r2
¼ r2

h

4�t
� 1

serves as an excellent indicator of numerical diffusion inherent to the discretization scheme.
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Let us start with the analytical solution corresponding to x0 ¼ 0, y0 ¼ 0:5 and t0 ¼ 0:5p. Fig. 5 depicts

the exact and numerical solution after one full revolution of the Gaussian hill. The mesh size and time step

are the same as in the previous example. The solution produced by the FEM-TVD method with the Crank–
Nicolson time-stepping and the MC flux limiter proves to be very accurate, although some �peak clipping�
does occur. The global maximum drops to 9.9283 as compared to 10.1360 for the exact solution.

As the Gaussian hill moves around the origin, it is being gradually smeared by diffusion. The error

estimator Drrel enables us to compare the performance of standard TVD limiters and to investigate the

influence of the time discretization. If the first-order accurate backward Euler method is employed, the

temporal part of the relative variance error plays an important role at large time steps and decreases linearly

as the time step is refined (see Fig. 6, left). For the second-order accurate Crank–Nicolson scheme, the

temporal discretization error is negligibly small. This is why the time step does not affect the values of Drrel

displayed in Fig. 6 (right). In this case, the accuracy is determined by the space discretization and the choice

of the flux limiter is decisive.

As expected, by far the most diffusive solutions are produced by the discrete upwind scheme, whereas the

nonlinear FEM-TVD correction leads to a dramatic improvement. At the same time, a comparison of

standard TVD limiters with one another reveals that the relative variance error may differ appreciably from

case to case. The most diffusive limiter is minmod followed by Van Leer. The MC limiter used to obtain the

numerical solution shown in Fig. 5 outperforms both of them. Moreover, it is more suitable for the

treatment of smooth profiles than Roe�s superbee limiter. The latter turns out to be underdiffusive, so that
Drrel is negative if the spatial discretization error dominates. It is important to be aware of this fact when

using the superbee limiter in CFD simulations.

13.3. Steady-state convection–diffusion

The FEM-TVD algorithm for the design of discrete transport operators can be applied to stationary

problems directly or in conjunction with a pseudo-time-stepping technique. In the latter case, the steady-

state solution is obtained by marching into the stationary limit of the associated time-dependent problem.
The temporal accuracy is immaterial in this case, since the time step is merely an artificial parameter which

determines the convergence rates. Hence, it is desirable to choose time steps as large as possible, so as to
Fig. 5. Rotation of a Gaussian hill, 128� 128 bilinear elements, t ¼ 2:5p.
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Fig. 6. Gaussian hill: relative variance error vs. the time step.
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reduce the computational cost. The restrictive CFL condition prevents explicit schemes from operating with
large time steps and makes them too inefficient for our purposes. This drawback can be rectified to some

extent by resorting to local time-stepping but it is obvious that steady-state problems call for an implicit

treatment.

In light of the above, the fully implicit backward Euler method, which was found to be quite diffusive for

transient problems, constitutes an excellent iterative solver for steady or creeping flows. Let us investigate

the numerical behavior of the backward Euler TVD scheme for the singularly perturbed convection–dif-

fusion equation

v � ru� �Du ¼ 0 in X ¼ ð0; 1Þ � ð0; 1Þ;

where v ¼ ðcos 10�; sin 10�Þ and � ¼ 10�3. The concomitant boundary conditions read

ou
oy
ðx; 1Þ ¼ 0; uðx; 0Þ ¼ uð1; yÞ ¼ 0; uð0; yÞ ¼ 1; yP 0:5;

0; y < 0:5:

�

The solution to this elliptic problem is characterized by the presence of a sharp front next to the line x ¼ 1.
The boundary layer develops because the solution of the reduced problem (� ¼ 0) does not satisfy the

homogeneous Dirichlet boundary condition.

A reasonable initial approximation for the pseudo-time-stepping loop is given by

uðx; y; 0Þ ¼ 1� x; yP 0:5;
0; y < 0:5:

�

It is worthwhile to start with the discrete upwind scheme and use the converged low-order solution as initial

data for the time-dependent FEM-TVD algorithm. This �educated guess� should be close enough to the

steady-state limit. Hence, the computational overhead due to the assembly and limiting of antidiffusive

fluxes will be insignificant.

The numerical solutions depicted in Fig. 7 demonstrate that the FEM-TVD method combined with

backward Euler time discretization is capable of producing nonoscillatory solutions with a sharp resolution

of steep fronts and boundary layers. The left diagram was computed as before on the Cartesian grid of



Fig. 7. Convection–diffusion, � ¼ 10�3. FEM-TVD (superbee).
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128� 128 bilinear elements, while the computational mesh for the right one consists of just 1920 elements

and is refined in regions where the solution gradients are large. Due to the adaptive mesh refinement and a

special alignment of the grid lines, the accuracy is comparable with that achieved on the uniform mesh at a

much higher computational cost. This example indicates that our multidimensional FEM-TVD algorithm
can be successfully applied on adaptive meshes and benefit from the unconditional stability of implicit

time-stepping.
13.4. Standing vortex

The generality of the fully discrete approach has enabled us to integrate the FEM-TVD algorithm into

the incompressible flow solver FEATFLOW based on the nonconforming Rannacher–Turek finite elements

(a discontinuous rotated bilinear approximation of the velocity components on quadrilateral meshes)
[38,45]. The multidimensional flux limiter was built into the matrix assembly routine for the convective

terms and no other modifications of the code were necessary. The incompressibility constraint for the

Navier–Stokes equations was imposed in the framework of the Multilevel Pressure Schur Complement

formulation which unites coupled solution techniques and discrete projection methods which decouple the

velocity and pressure using suitable operator-splitting tools [46].

Let us first apply a nonstationary projection solver to the well-known standing vortex problem in order

to verify the dissipative properties of TVD limiters. The incompressible Navier–Stokes equations for an

inviscid flow (Re ¼ 1) are solved in a unit square

ou

ot
þ u � ruþrp ¼ 0; r � u ¼ 0 in X ¼ ð0; 1Þ2: ð61Þ

The initial condition is an axisymmetric vortex which also represents the exact steady-state solution. In

polar coordinates, the velocity u can be decomposed into the radial component ur and the angular com-

ponent uh which are initialized by
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ur ¼ 0; uh ¼
5r; r < 0:2;
2� 5r; 0:26 r6 0:4;
0; r > 0:4;

8<
:

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy � 0:5Þ2

q
denotes the distance from the center.

The objective is to test the ability of the discretization scheme to reproduce the original vortex. The

numerical results produced by the Galerkin method equipped with discrete upwinding and four standard

TVD limiters are compared to the exact solution in Fig. 8. They were obtained at t ¼ 3 using a mesh of

64� 64 quadrilateral elements and backward Euler time-stepping. The artificial viscosity introduced by

discrete upwinding is seen to degrade the accuracy of the solution appreciably, while FEM-TVD injects

enough antidiffusion to alleviate the smearing of the vortex. The differences between the performance of the

flux limiters under consideration are marginal but a closer look reveals that their diffusivities compare as
discussed above for the Gaussian hill problem.
13.5. Flow around a cylinder

The second incompressible flow problem to be dealt with is the established benchmark Flow around a

cylinder developed for the priority program ‘‘Flow simulation on high-performance computers’’ under the

auspices of DFG, the German Research Association [39]. This project was intended to facilitate the

evaluation of various numerical algorithms for the incompressible Navier–Stokes equations in the laminar
flow regime. A quantitative comparison of simulation results is possible on the basis of relevant flow

characteristics such as drag and lift coefficients, for which reliable reference values are available. Moreover,

the efficiency of solution techniques can be assessed in an objective manner.

Let us consider the steady incompressible flow around a cylinder with a circular cross-section. An in-

depth description of the geometrical details and boundary conditions for the 2D/3D case can be found in

[39,46] which contain all relevant information regarding this benchmark configuration. The flow at Re ¼ 20

is actually dominated by diffusion and could be simulated by the standard Galerkin method without any

extra stabilization (as far as the discretization is concerned; the iterative solver may require using a sta-
bilized preconditioner). Our goal is to investigate the behavior of FEM-TVD schemes for such low Rey-

nolds number flows, for which their use is hardly optimal.

In particular, it is instructive to study the interplay of finite element discretizations for the convective and

diffusive terms. As already mentioned above, discrete upwinding can be performed for the cumulative

transport operator or just for the convective part. In the case of the nonconforming ~Q1-elements, the

discrete Laplacian operator originating from the Galerkin approximation of viscous terms is a positive-

definite matrix but some of its off-diagonal coefficients are negative. Our numerical experiments indicate

that it is worthwhile to leave it unchanged and apply the TVD postprocessing to the discretized convective
term. In the case of linear or bilinear elements, physical diffusion can be taken into account in the formula

(32) but the auxiliary quantities P�i and Q�i for the flux limiter should still be evaluated using the coefficients

of the convective operator.

To generate the hierarchical data structures for the geometric multigrid algorithm which constitutes the

core of our incompressible flow solver FEATFLOW, we introduce a sequence of successively refined

quadrilateral meshes. The elements of the coarse mesh shown in Fig. 9 are subdivided into four subelements

at each refinement level, and the 2D mesh is extended into the third dimension for a 3D simulation. The

two-dimensional results produced by the FEM-TVD algorithm embedded in a discrete projection method
with pseudo-time-stepping are presented in Table 1. The computational mesh for the multigrid level NLEV

contains NMT midpoints and NEL elements. For the employed ~Q1=Q0 finite element pair (rotated bilinear

velocity, piecewise constant pressure), NMT represents the number of unknowns for each velocity com-

ponent, while NEL equals the number of degrees of freedom associated with the pressure.
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Fig. 8. Standing vortex problem. FEM-TVD solution at t ¼ 3.
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Table 1

FEM-TVD (MC), projection solver

NLEV NMT NEL CD CL

3 4264 2080 5.6502 0.5233� 10�2

4 16,848 8320 5.5852 0.8080� 10�2

5 66,976 33,280 5.5760 0.9946� 10�2

6 267,072 133,120 5.5707 0.1042� 10�1

7 1,066,624 532,480 5.5692 0.0963� 10�1

Fig. 9. Coarse mesh for the DFG benchmark ‘‘Flow around a cylinder’’.
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The drag and lift coefficients listed in Table 1 exhibit a monotone convergence behavior but fall short of

the reference values CD � 5:5795, CL � 0:01061 on fine meshes. This discrepancy can be attributed to the

choice of stopping criteria for this simulation. In fact, the accuracy of approximation for such derived

quantities cannot be properly controlled in a solver developed primarily for time-dependent problems.

Fortunately, the FEM-TVD algorithm is readily applicable in the stationary case, so that the use of pseudo-

time-stepping is not mandatory. Taking advantage of this fact, we integrated TVD limiters into another

FEATFLOW module which lends itself to the solution of the stationary Navier–Stokes equations. It is

based on the local Multilevel Pressure Schur Complement approach with adaptive patching, whereby small
subproblems are solved exactly within an outer block-Gauss–Seidel/Jacobi iteration [40,46]. This strongly

coupled solution technique is very robust and far superior to projection schemes at low Reynolds numbers.

Upon convergence, local and global MPSC methods yield the same results.

Tables 2 and 3 demonstrate that the drag and lift coefficients produced by the coupled solver are in a

good agreement with the reference values and with those obtained using Samarski�s upwind method based

on a classical artificial viscosity which depends on the local Reynolds number [46]. It is worth mentioning

that this finite-volume-like discretization of convective terms, which has traditionally been used in

FEATFLOW, involves a free parameter which must be determined by trial and error. Clearly, the �optimal�
value is hard to find from a priori considerations. In addition, Samarski�s hybrid method is only suitable for

intermediate and low Reynolds numbers, since it becomes increasingly diffusive and degenerates into

the standard upwind scheme in the limit of inviscid flow. At the same time, the nonlinear FEM-TVD
Table 2

FEM-TVD (MC), coupled solver

NLEV CD CL NL MG CPU

3 5.8084 0.1733� 10�2 22 33 38

4 5.6514 0.7171� 10�2 10 19 87

5 5.6003 0.9734� 10�2 8 15 291

6 5.5854 0.1040� 10�1 7 13 1074

7 5.5811 0.1058� 10�1 5 9 3144



Table 3

Samarski�s upwind, coupled solver

NLEV CD CL NL MG CPU

3 5.6699 0.5694� 10�2 9 26 29

4 5.6004 0.9700� 10�2 8 22 98

5 5.5841 0.1048� 10�1 7 19 364

6 5.5806 0.1060� 10�1 6 16 1280

7 5.5798 0.1061� 10�1 5 13 4390

156 D. Kuzmin, S. Turek / Journal of Computational Physics 198 (2004) 131–158
discretization remains remarkably accurate for arbitrarily large Reynolds numbers (see the previous ex-

ample), whereby the tradeoff between accuracy and stability is managed automatically by the flux limiter.

Interestingly enough, the number of nonlinear iterations NL and linear multigrid steps MG reduces as

the mesh is refined, which is typical for such configurations [46]. Moreover, the improvement of conver-

gence rates is faster than that for the hybrid upwind method which is more efficient than FEM-TVD on

coarse meshes but less efficient on fine ones, as can be seen from the presented CPU times. In our expe-

rience, the differences are even more pronounced if Newton�s method is employed. On the other hand, its
advantages in comparison to defect correction seem to fade at high Reynolds numbers, since the nonlin-

earity inherent to the discretization procedure plays an increasingly important role. In a nutshell, the design

of robust and efficient iterative solvers for nonlinear high-resolution schemes with flux limiters is a non-

trivial task, so there is a lot of room for further research.

Last but not least, it is worth mentioning that our �black-box� postprocessing routine for the convective

operator proved to be applicable in 3D without any modifications. The three-dimensional simulation re-

sults produced by the FEM-TVD algorithm combined with a projection solver from the FEATFLOW

package are presented in Fig. 10. The underlying mesh (NLEV¼ 4) consists of 49,152 hexahedral elements
and gives rise to 151,808 unknowns for each velocity component. In Table 4, the drag and lift coefficients

for three different mesh levels are compared with the reference values published in [39] and with those

obtained using finite volume upwinding (UPW), Samarski�s hybrid scheme (SAM) and streamline diffusion

(SD) stabilization. The FEM-TVD method was found to perform very well, whereas the results produced

by its competitors are rather sensitive to the value of the involved user-defined constant [46] which is not

known a priori.
Fig. 10. Horizontal velocity. FEM-TVD (MC), 3D projection solver.



Table 4

FEM-TVD vs. upwind and streamline diffusion

NLEV UPW-1st SAM-1.0 SD-0.25 SD-0.5 TVD

3 6.08/1.01 5.72/0.28 5.78/)0.44 5.98/)0.52 6.40/0.35

4 6.32/1.20 6.07/0.62 6.13/0.26 6.26/0.18 6.24/0.64

5 6.30/1.20 6.14/0.83 6.17/0.70 6.23/0.64 6.19/0.80

Ref 6.18/0.85 6.18/0.85 6.18/0.85 6.18/0.85 6.18/0.85
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14. Conclusions

A generalization of one-dimensional TVD schemes to finite element discretizations on unstructured

meshes was presented. The discrete transport operator was modified by elimination of negative off-diagonal

coefficients followed by insertion of compensating antidiffusion. The LED principle was utilized to gen-

eralize the concept of upwinding and to design a family of multidimensional TVD limiters controlling the

local solution gradients or the ratio of diffusive/antidiffusive fluxes. The proposed algorithm renders a
centered discretization of convective terms local extremum diminishing and positivity-preserving. It is

characterized by a remarkable flexibility and the ease of implementation. Furthermore, it can be readily

integrated into existing CFD software as a modular extension to the matrix assembly routine. The potential

of the new methodology was demonstrated by application to scalar convection and incompressible flow

problems. It can be extended to hyperbolic systems of conservation laws in the framework of an ap-

proximate Riemann solver using a suitable transformation to the characteristic variables (see [1,10,41,42]).
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